дробный модуль - ترجمة إلى الروسية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

дробный модуль - ترجمة إلى الروسية

Циклический модуль; Неразложимый модуль; Левый модуль; Правый модуль; Вполне разложимый модуль; Гомоморфизм модулей; Фактормодуль

дробный модуль      
( производный модуль, составляющий часть основного модуля; устанавливается умножением основного модуля на дробное число для назначения относительно малых размеров )
sous-module; submodule; module fractionnel
модуль продольной упругости         
ФИЗИЧЕСКАЯ ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ СВОЙСТВА МАТЕРИАЛА СОПРОТИВЛЯТЬСЯ РАСТЯЖЕНИЮ, СЖАТИЮ ПРИ УПРУГОЙ ДЕФОРМАЦИИ
Юнга модуль; Модуль продольной упругости; Продольной упругости модуль; Модуль упругости продольной; Модуль нормальной упругости
coefficient d'élasticité longitudinale
модуль Юнга         
ФИЗИЧЕСКАЯ ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ СВОЙСТВА МАТЕРИАЛА СОПРОТИВЛЯТЬСЯ РАСТЯЖЕНИЮ, СЖАТИЮ ПРИ УПРУГОЙ ДЕФОРМАЦИИ
Юнга модуль; Модуль продольной упругости; Продольной упругости модуль; Модуль упругости продольной; Модуль нормальной упругости
module (d')Joung

تعريف

ПРОДОЛЬНОЙ УПРУГОСТИ МОДУЛЬ
см. Модули упругости.

ويكيبيديا

Модуль над кольцом

Мо́дуль над кольцо́м — обобщение понятия векторного пространства с полей на кольца. Одно из основных понятий общей алгебры.

Модули позволяют адаптировать на многие алгебраические структуры стандартные понятия линейной алгебры, такие как базис и линейное отображение, а также предоставляют единообразный язык для работы с такими структурами. Например, модули над кольцом целых чисел Z {\displaystyle \mathbb {Z} } — это в точности абелевы группы, а модули над кольцом многочленов k [ x ] {\displaystyle k[x]} над некоторым полем k {\displaystyle k} — в точности векторные пространства над k {\displaystyle k} с фиксированным линейным оператором.

Понятие модуля лежит в основе коммутативной алгебры, которая играет важную роль в различных областях математики, таких как алгебраическая геометрия, гомологическая алгебра и теория представлений.